WIND and EARTHQUAKE RESISTANT BUILDINGS
The primary objective of this book is to disseminate information on the latest concepts, techniques, and design data to structural engineers engaged in the design of wind- and seismic-resistant buildings. Integral to the book are recent advances in seismic design, particularly those related to buildings in zones of low and moderate seismicity. These stipulations, reflected in the latest provisions of American Society of Civil Engineers (ASCE) 7-02, International Building Code (IBC)-03, and National Fire Protection Association (NFPA) 5000, are likely to be adopted as a design standard by local code agencies.
There now exists the unprecedented possibility of a single standard becoming a basis for earthquake-resistant design virtually in the entire United States, as well as in other nations that base their codes on U.S. practices. By incorporating these and the latest provisions of American Concrete Institute (ACI) 318-02, American Institute of Steel Construction (AISC) 341-02, and Federal Emergency Management Agency (FEMA) 356 and 350 series,
this book equips designers with up-to-date information to execute safe designs, in accordance with the latest regulations.
Chapter 1 presents methods of determining design wind loads using the provisions of ASCE 7-02, National Building Code of Canada (NBCC) 1995, and 1997 Uniform Building Code (UBC). Wind-tunnel procedures are discussed, including analytical methods for determining along-wind and across-wind response.
Chapter 2 discusses the seismic design of buildings, emphasizing their behavior under large inelastic cyclic deformations. Design provisions of ASCE 7-02 (IBC-03, NFPA 5000) and UBC-97 that call for detailing requirements to assure seismic performance
beyond the elastic range are discussed using static, dynamic, and time-history procedures.
The foregone design approach—in which the magnitude of seismic force and level of detailing were strictly a function of the structure’s location—is compared with the most recent provisions, in which these are not only a function of the structure’s location, but also of its use and occupancy, and the type of soil it rests upon. This comparison will be particularly useful for engineers practicing in many seismically low- and moderate-risk areas of the United States, who previously did not have to deal with seismic design and detailing, but are now obligated to do so. Also explored are the seismic design of structural elements, nonstructural components, and equipment. The chapter concludes with a review of structural dynamic theory. The design of steel buildings for lateral loads is the subject of Chapter 3. Traditional as well as modern bracing systems are discussed, including outrigger and belt truss systems that have become the workhorse of lateral bracing systems for super-tall buildings. The lateral design of concentric and eccentric braced frames, moment frames with reduced
beam section, and welded flange plate connections are discussed, using provisions of ASCE 341-02 and FEMA-350 as source documents. Chapter 4 addresses concrete structural systems such as flat slab frames, coupled shear walls, frame tubes, and exterior diagonal and bundled tubes. Basic concepts of structural behavior that emphasize the importance of joint design are discussed. Using design provisions of ACI 318-02, the chapter also details building systems such as ordinary, intermediate, and special reinforced concrete moment frames, and structural walls. The design of buildings using a blend of structural steel and reinforced concrete, often referred to as composite construction, is the subject of Chapter 5. The design of composite beams, columns, and shear walls is discussed, along with building systems such as composite shear walls and megaframes. Chapter 6 is devoted to the structural rehabilitation of seismically vulnerable buildings. Design differences between a code-sponsored approach and the concept of ductility trade-off for strength are discussed, including seismic deficiencies and common upgrademethods.
Chapter 7 is dedicated to the gravity design of vertical and horizontal elements of steel, concrete, and composite buildings. In addition to common framing types, novel systems such as haunch and stub girder systems are also discussed. Considerable coverage is given to the design of prestressed concrete members based on the concept of load balancing.
The final chapter is devoted to a wide range of topics. Chapter 8 begins with a discussion of the evolution of different structural forms particularly applicable to the design of tall buildings. Case studies of buildings with structural systems that range from run of the mill bracing techniques to unique composite systems including megaframes and external superbraced frames are examined. Next, reduction of building occupants’ motion perceptions using damping devices is considered, including tuned mass dampers, slashing water dampers, tuned liquid column dampers, and simple and nested pendulum dampers. Panel zone effects, differential shortening of columns, floor-leveling problems, and floor vibrations are studied, followed by a description of seismic base isolation and energy dissipation techniques. The chapter concludes with an explanation of buckling restrained bracing systems that permit plastic yielding of compression braces.
The book speaks to a multifold audience. It is directed toward consulting engineers and engineers employed by federal, state, and local governments. Within the academy, thebook will be helpful to educators and students alike, particularly as a teaching tool in courses for students who have completed an introductory course in structural engineering and seek a deeper understanding of structural design principles and practice. To assist readers in visualizing the response of structural systems, numerous illustrations and practical design problems are provided throughout the text. Wind- and Earthquake-Resistant Buildings integrates the design aspects of steel, concrete, and composite buildings within a single text. It is my hope that it will serve as a comprehensive design reference for practicing engineers and educators.
DOWNLOAD :- HERE